Daucosterol - Compound Card

Daucosterol

Select a section from the left sidebar

Daucosterol

Structure
Zoomed Structure
  • Family: Plantae - Bignoniaceae
  • Kingdom: Plantae
  • Class: Steroid
    • Subclass: Phytosterol
Canonical Smiles CC[C@@H](C(C)C)CC[C@H]([C@H]1CC[C@@H]2[C@]1(C)CC[C@H]1[C@H]2CC=C2[C@]1(C)CC[C@@H](C2)O[C@@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O)C
InChI InChI=1S/C35H60O6/c1-7-22(20(2)3)9-8-21(4)26-12-13-27-25-11-10-23-18-24(14-16-34(23,5)28(25)15-17-35(26,27)6)40-33-32(39)31(38)30(37)29(19-36)41-33/h10,20-22,24-33,36-39H,7-9,11-19H2,1-6H3/t21-,22-,24+,25+,26-,27+,28+,29-,30-,31+,32-,33-,34+,35-/m1/s1
InChIKey NPJICTMALKLTFW-OFUAXYCQSA-N
Formula C35H60O6
HBA 6
HBD 4
MW 576.86
Rotatable Bonds 9
TPSA 99.38
LogP 5.85
Number Rings 5
Number Aromatic Rings 0
Heavy Atom Count 41
Formal Charge 0
Fraction CSP3 0.94
Exact Mass 576.44
Number of Lipinski Rule Violations 2
# Species Family Kingdom NCBI Taxonomy ID
1 Helianthemum sessiliflorum Cistaceae Plantae 2650562
2 Euphorbia bupleuroides Euphorbiaceae Plantae 1532838
3 Centaurea omphalotricha Asteraceae Plantae 41503
4 Turraea nilotica Meliaceae Plantae 992803
5 Antrocaryon klaineanum Anacardiaceae Plantae 289695
6 Oxyanthus unilocularis Annonaceae Plantae 1768086
7 Anonidium mannii Annonaceae Plantae 2109291
8 Tabernaemontana contorta Apocynaceae Plantae 761060
9 Dracaena mannii Asparagaceae Plantae 1237547
10 Vernonia guineensis Asteraceae Plantae 3032568
11 Stereospermum zenkeri Bignoniaceae Plantae 260324
12 Crateva adansonii Capparaceae Plantae 190806
13 Erica mannii Ericaceae Plantae 2984617
14 Neoboutonia macrocalyx Euphorbiaceae Plantae 1260343
15 Acacia sieberiana Leguminosae/Fabaceae Plantae 546664
16 Albizia adianthifolia Leguminosae/Fabaceae Plantae 992633
17 Pentadesma butyracea Guttiferae Plantae 198785
18 Plectranthus glandulosus Lamiaceae Plantae 2485351
19 Erythrina addisoniae Leguminosae/Fabaceae Plantae 2590682
20 Trichilia monadelpha Meliaceae Plantae 1640473
21 Entada rheedei Mimosaceae Plantae 204974
22 Artocarpus communis Moraceae Plantae 194251
23 Ficus bubu Moraceae Plantae 378014
24 Ficus glumosa Moraceae Plantae 182114
25 Ficus mucuso Moraceae Plantae 309328
26 Ficus thonningii Moraceae Plantae 309310
27 Rhabdophyllum arnoldianum Ochnaceae Plantae 1501067
28 Maesa lanceolata Primulaceae Plantae 992730
29 Mitragyna inermis Rubiaceae Plantae 170023
30 Pentas schimperi Rubiaceae Plantae 25384
31 Rothmannia talbotii Rubiaceae Plantae 1317881
32 Chythrantus claneianus Sapindaceae Plantae
33 Paullinia pinnata Sapindaceae Plantae 290984
34 Paullinia pinnata Sapindaceae Plantae 290984
35 Glyphaea brevis Tiliaceae Plantae 93769
36 Tectona grandis Verbenaceae Plantae 41396
37 Justicia secunda Acanthaceae Plantae 4190
38 Bignonia binata Bignoniaceae Plantae 680235

Showing of synonyms

  • Tala M, Wabo H, et al. (2013). A prenylated xanthone and antiproliferative compounds from leaves of Pentadesma butyracea. Phytochemistry Letters, 2013, 6(3), 326-330. [View]
  • Seumo AS, Nanfack ARD, et al. (2022). Alkenylbenzoquinones and other compounds from the fruit of Maesa lanceolata exhibited potent cytotoxic, antibacterial, and antiradical scavenging activities.. Natural product research,2022, 36(17), 4379-4387. [View] [PubMed]
  • Nanmeni G, Tedonkeu AT, et al. (2021). An Efflux Pumps Inhibitor Significantly Improved the Antibacterial Activity of Botanicals from Plectranthus glandulosus towards MDR Phenotypes.. TheScientificWorldJournal,2021, 2021, 5597524. [View] [PubMed]
  • Lenta BN, Weniger B, et al. (2007). Anthraquinones from the stem bark of Stereospermum zenkeri with antimicrobial activity.. Phytochemistry,2007, 68(11), 1595-1599. [View] [PubMed]
  • Antibacterial and antibiotic-modifying activities of fractions and compounds from Albizia adianthifolia against MDR Gram-negative enteric bacteria. (2019). Antibacterial and antibiotic-modifying activities of fractions and compounds from Albizia adianthifolia against MDR Gram-negative enteric bacteria.. BMC complementary and alternative medicine,2019, 19(1), 120. [View] [PubMed]
  • Kayo MT, Simo MK, et al. (2021). Antifungal potential of extracts, fractions and compounds from Uvaria comperei (Annonaceae) and Oxyanthus unilocularis (Rubiaceae).. Natural product research,2021, 35(24), 5732-5736. [View] [PubMed]
  • Kuete V, Ango PY, et al. (2011). Antimicrobial activities of the methanol extract and compounds from Artocarpus communis (Moraceae).. BMC complementary and alternative medicine,2011, 11, 42. [View] [PubMed]
  • Lunga PK, Qin XJ, et al. (2014). Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata.. BMC complementary and alternative medicine,2014, 14, 369. [View] [PubMed]
  • Irungu BN, Adipo N, et al. (2015). Antiplasmodial and cytotoxic activities of the constituents of Turraea robusta and Turraea nilotica.. Journal of Ethnopharmacology,2015,174,419-425. [View] [PubMed]
  • Kopa T, Tchinda A, et al. (2014). Antiplasmodial anthraquinones and hemisynthetic derivatives from the leaves of Tectona grandis (Verbenaceae). Phytochemistry Letters, 2014, 8, 41-45. [View]
  • Lunga PK, Tamokou Jde D, et al. (2014). Antityphoid and radical scavenging properties of the methanol extracts and compounds from the aerial part of Paullinia pinnata.. SpringerPlus,2014, 3, 302. [View] [PubMed]
  • Mahmoud B, Samy M, et al. (2020). Bignanoside A "A new neolignan glucoside" and bignanoside B "A new iridoid glucoside" from Bignonia binata leaves. Phytochemistry Letters, 2020, 35, 200-205. [View]
  • Zingue S, Gbaweng Yaya AJ, et al. (2020). Bioguided identification of daucosterol, a compound that contributes to the cytotoxicity effects of Crateva adansonii DC (capparaceae) to prostate cancer cells.. Journal of ethnopharmacology,2020, 247, 112251. [View] [PubMed]
  • Ngaffo CMN, Tchangna RSV, et al. (2020). Botanicals from the leaves of Acacia sieberiana had better cytotoxic effects than isolated phytochemicals towards MDR cancer cells lines.. Heliyon,2020, 6(11), e05412. [View] [PubMed]
  • Bankeu JJ, Mustafa SA, et al. (2010). Ceramide and Cerebroside from the stem bark of Ficus mucuso (Moraceae).. Chemical & pharmaceutical bulletin,2010, 58(12), 1661-1665. [View] [PubMed]
  • Nana F, Sandjo LP, et al. (2012). Ceramides and cytotoxic constituents from Ficus glumosa Del. (Moraceae). J. Braz. Chem. Soc., 2012, 23(3). [View] [PubMed]
  • Mbosso EJ, Wintjens R, et al. (2013). Chemical constituents from Glyphaea brevis and Monodora myristica: chemotaxonomic significance.. Chemistry & biodiversity,2013, 10(2), 224-232. [View] [PubMed]
  • Talla E, Yankep E, et al. (2014). Chemical constituents from root barks of Erythrina mildbraedii and stem barks of Erythrina addisoniae. Bull. Chem. Soc. Ethiop. 2014, 28(1), 155-159. [View]
  • Mouffok S, Haba H, et al. (2012). Chemical constituents of Centaurea omphalotricha Coss. & Durieu ex Batt. & Trab.. Records of Natural Products,2012,6(3),292-295. [View]
  • Djoumessi AK, Nono RN, et al. (2023). Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities. Metabolites 2023, 13, 298. [View] [PubMed]
  • Foudjo Melacheu G, Mfotie Njoya E, et al. (2021). Contortamide, a new anti-colon cancer cerebroside and other constituents from Tabernaemontana contorta Stapf (Apocynaceae). Natural product research,2021, 35(11), 1757-1765. [View] [PubMed]
  • Bitchagno GT, Tankeo SB, et al. (2016). Ericoside, a new antibacterial biflavonoid from Erica mannii (Ericaceae).. Fitoterapia,2016, 109, 206-211. [View] [PubMed]
  • Anigboro AA, Akeghware O, et al. (2022). Evaluation of bioactive constituents and In vitro antioxidant potentials of the ethanolic leaf extracts of Dracaena mannii, Euphorbia hirta and Senna alata. Journal of bio-research, 2022, 20(3), 1753-1762. [View]
  • Fongang Y, Bankeu J, et al. (2015). Flavonoids and other bioactive constituents from Ficus thonningii Blume (Moraceae). Phytochemistry Letters, 2015, 11, 139-145. [View]
  • Mbosso ETJ, Kamdem ML, et al. (2015). In Vitro Evaluation of Antimicrobial and Antiproliferative Activities for Compounds Isolated from the Ficus Bubu Warb. (Moraceae) Fruits: Chemotaxonomic Significance. Drug Delivery Letters,2015, 5(2), 122-131. [View]
  • Ngangoue MO, Ndifor AR, et al. (2024). Isolation and antibacterial activity of anomanol B and other secondary metabolites from the stem bark of Anonidium mannii (Annonaceae). Natural product research,2024, 38(11), 1813-1822. [View] [PubMed]
  • Benabdelaziz I, Haba H, et al. (2015). Lignans and other constituents from Helianthemum sessiliflorum Pers.. Records of Natural Products,2015,9(3),342-348. [View]
  • Donfack E, Lenta B, et al. (2012). Naucleactonin D, an Indole Alkaloid and other Chemical Constituents from Roots and Fruits of Mitragyna inermis. Zeitschrift für Naturforschung B. 2012, 67(11), 1159-1165. [View]
  • Mbing JN, Missi MB, et al. (2014). New flavonoids C-glycosides from Rhabdophyllum arnoldianum.. Natural product research,2014, 28(8), 539-544. [View] [PubMed]
  • Kamlo Kamso VF, Dongmo Melogmo YK, et al. (2023). New lignan glycosides from Justicia secunda Vahl (Acanthaceae) with antimicrobial and antiparasitic properties.. Heliyon,2023, 9(12), e22897. [View] [PubMed]
  • Donfack A, Tala M, et al. (2017). Rothtalazepane, A New Azepane from the Wood of Rothmannia talbotii (Rubiaceae). Natural Product Communications, 2017, 12(9), 1435 - 1436. [View]
  • Donfack A, Toyang N, et al. (2012). Stigmastane derivatives from the roots of Vernonia guineensis and their antimicrobial activity.. Phytochemistry Letters, 2012, 5(3), 596-599. [View]
  • Aichour S, Haba H, et al. (2014). Terpenoids and other constituents from Euphorbia bupleuroides. Phytochemistry,2014,10,198-203. [View]
  • Maffo T, Wafo P, et al. (2015). Terpenoids from the stem bark of Neoboutonia macrocalyx (Euphorbiaceae). Phytochemistry Letters, 2015, 12, 328-331. [View]
  • Fouokeng Y, Akak CM, et al. (2017). The structure of antrocarine E, an ergostane isolated from Antrocaryon klaineanum Pierre (Anacardiaceae).. Fitoterapia,2017, 117, 61-64. [View] [PubMed]
  • Donfack A, Tala M, et al. (2014). Two new anthraquinone dimers from the stem bark of Pentas schimperi (Rubiaceae). Phytochemistry Letters, 2014, 8, 55-58. [View]
  • Nzowa LK, Teponno RB, et al. (2013). Two new tryptophan derivatives from the seed kernels of Entada rheedei: effects on cell viability and HIV infectivity.. Fitoterapia,2013, 87, 37-42. [View] [PubMed]
  • Gojayev AS, Bankeu JJK, et al. (2013). Xanthine oxidase inhibitory activity of compounds from Chythrantus claneianus. Bangladesh J Pharmacol, 2013, 8(1), 78-83. [View]
CPRiL: 7215
Structure

SMILES: C1CCC(C12)CCC3C2CC=C4C3CCC(C4)OC5CCCCO5

Level: 1

Mol. Weight: 576.86 g/mol

Structure

SMILES: C1CCC(C12)CCC3C2CC=C4C3CCCC4

Level: 0

Mol. Weight: 576.86 g/mol

Structure

SMILES: C1CCOCC1

Level: 0

Mol. Weight: 576.86 g/mol

Anti-colon cancer
Antibacterial
Antiradical scavenging
Cytotoxic

Absorption

Caco-2 (logPapp)
-5.15
Human Oral Bioavailability 20%
Bioavailable
Human Intestinal Absorption
Absorbed
Madin-Darby Canine Kidney
-4.92
Human Oral Bioavailability 50%
Bioavailable
P-Glycoprotein Inhibitor
Inhibitor
P-Glycoprotein Substrate
Non-Substrate
Skin Permeability
1.98

Distribution

Blood-Brain Barrier (CNS)
-
Blood-Brain Barrier
Penetrable
Fraction Unbound (Human)
1.34
Plasma Protein Binding
105.49
Steady State Volume of Distribution
-

Metabolism

Breast Cancer Resistance Protein
Non-Inhibitor
CYP 1A2 Inhibitor
Non-Inhibitor
CYP 1A2 Substrate
Non-Substrate
CYP 2C19 Inhibitor
Non-Inhibitor
CYP 2C19 Substrate
Substrate
CYP 2C9 Inhibitor
Non-Inhibitor
CYP 2C9 Substrate
Non-Substrate
CYP 2D6 Inhibitor
Non-Inhibitor
CYP 2D6 Substrate
Non-Substrate
CYP 3A4 Inhibitor
Non-Inhibitor
CYP 3A4 Substrate
Substrate
OATP1B1
Non-Inhibitor
OATP1B3
Non-Inhibitor

Excretion

Clearance
3.08
Organic Cation Transporter 2
Non-Inhibitor
Half-Life of Drug
-

Toxicity

AMES Mutagenesis
Safe
Avian
Safe
Bee
Toxic
Bioconcentration Factor
-1.84
Biodegradation
Safe
Carcinogenesis
Safe
Crustacean
Toxic
Liver Injury I (DILI)
Toxic
Eye Corrosion
Safe
Eye Irritation
Safe
Maximum Tolerated Dose
0.08
Liver Injury II
Safe
hERG Blockers
Toxic
Daphnia Maga
6.21
Micronucleos
Safe
NR-AhR
Safe
NR-AR
Safe
NR-AR-LBD
Safe
NR-Aromatase
Safe
NR-ER
Safe
NR-ER-LBD
Safe
NR-GR
Safe
NR-PPAR-gamma
Safe
NR-TR
Safe
T. Pyriformis
-6822.74
Rat (Acute)
2.64
Rat (Chronic Oral)
3.23
Fathead Minnow
18.11
Respiratory Disease
Safe
Skin Sensitisation
Toxic
SR-ARE
Safe
SR-ATAD5
Safe
SR-HSE
Safe
SR-MMP
Safe
SR-p53
Safe

General Properties

Boiling Point
363.25
Hydration Free Energy
-2.87
Log(D) at pH=7.4
5.78
Log(P)
7.4
Log S
-5.04
Log(Vapor Pressure)
-10.62
Melting Point
182.42
pKa Acid
8.82
pKa Basic
7.72
Protein Name UniProt ID Entry Name Species #Pharmacophore Points Probability (0.7 ≤ Tversky Score ≤ 1.0)
Serpin domain-containing protein H0ZQY2 H0ZQY2_TAEGU Taeniopygia guttata 3 0.8961
Serpin domain-containing protein H0ZQY2 H0ZQY2_TAEGU Taeniopygia guttata 3 0.8961
Aldos-2-ulose dehydratase P84193 AUD_PHACH Phanerodontia chrysosporium 3 0.8632
Aldos-2-ulose dehydratase P84193 AUD_PHACH Phanerodontia chrysosporium 3 0.8632
Aldo-keto reductase family 1 member C2 P52895 AK1C2_HUMAN Homo sapiens 3 0.8174
Aldo-keto reductase family 1 member C2 P52895 AK1C2_HUMAN Homo sapiens 3 0.8174
beta-glucosidase Q92AS9 Q92AS9_LISIN Listeria innocua serovar 6a 3 0.7833
beta-glucosidase Q92AS9 Q92AS9_LISIN Listeria innocua serovar 6a 3 0.7833
Macrophage metalloelastase P39900 MMP12_HUMAN Homo sapiens 3 0.7302
Macrophage metalloelastase P39900 MMP12_HUMAN Homo sapiens 3 0.7302
Putative b-glycan phosphorylase Q21MB1 Q21MB1_SACD2 Saccharophagus degradans 4 0.7120
Putative b-glycan phosphorylase Q21MB1 Q21MB1_SACD2 Saccharophagus degradans 4 0.7120

Download SDF