Select a section from the left sidebar
Daucosterol
- Family: Plantae - Bignoniaceae
- Kingdom: Plantae
-
Class: Steroid
- Subclass: Phytosterol
Canonical Smiles | CC[C@@H](C(C)C)CC[C@H]([C@H]1CC[C@@H]2[C@]1(C)CC[C@H]1[C@H]2CC=C2[C@]1(C)CC[C@@H](C2)O[C@@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O)C |
---|---|
InChI | InChI=1S/C35H60O6/c1-7-22(20(2)3)9-8-21(4)26-12-13-27-25-11-10-23-18-24(14-16-34(23,5)28(25)15-17-35(26,27)6)40-33-32(39)31(38)30(37)29(19-36)41-33/h10,20-22,24-33,36-39H,7-9,11-19H2,1-6H3/t21-,22-,24+,25+,26-,27+,28+,29-,30-,31+,32-,33-,34+,35-/m1/s1 |
InChIKey | NPJICTMALKLTFW-OFUAXYCQSA-N |
Formula | C35H60O6 |
HBA | 6 |
HBD | 4 |
MW | 576.86 |
Rotatable Bonds | 9 |
TPSA | 99.38 |
LogP | 5.85 |
Number Rings | 5 |
Number Aromatic Rings | 0 |
Heavy Atom Count | 41 |
Formal Charge | 0 |
Fraction CSP3 | 0.94 |
Exact Mass | 576.44 |
Number of Lipinski Rule Violations | 2 |
# | Species | Family | Kingdom | NCBI Taxonomy ID |
---|---|---|---|---|
1 | Helianthemum sessiliflorum | Cistaceae | Plantae | 2650562 |
2 | Euphorbia bupleuroides | Euphorbiaceae | Plantae | 1532838 |
3 | Centaurea omphalotricha | Asteraceae | Plantae | 41503 |
4 | Turraea nilotica | Meliaceae | Plantae | 992803 |
5 | Antrocaryon klaineanum | Anacardiaceae | Plantae | 289695 |
6 | Oxyanthus unilocularis | Annonaceae | Plantae | 1768086 |
7 | Anonidium mannii | Annonaceae | Plantae | 2109291 |
8 | Tabernaemontana contorta | Apocynaceae | Plantae | 761060 |
9 | Dracaena mannii | Asparagaceae | Plantae | 1237547 |
10 | Vernonia guineensis | Asteraceae | Plantae | 3032568 |
11 | Stereospermum zenkeri | Bignoniaceae | Plantae | 260324 |
12 | Crateva adansonii | Capparaceae | Plantae | 190806 |
13 | Erica mannii | Ericaceae | Plantae | 2984617 |
14 | Neoboutonia macrocalyx | Euphorbiaceae | Plantae | 1260343 |
15 | Acacia sieberiana | Leguminosae/Fabaceae | Plantae | 546664 |
16 | Albizia adianthifolia | Leguminosae/Fabaceae | Plantae | 992633 |
17 | Pentadesma butyracea | Guttiferae | Plantae | 198785 |
18 | Plectranthus glandulosus | Lamiaceae | Plantae | 2485351 |
19 | Erythrina addisoniae | Leguminosae/Fabaceae | Plantae | 2590682 |
20 | Trichilia monadelpha | Meliaceae | Plantae | 1640473 |
21 | Entada rheedei | Mimosaceae | Plantae | 204974 |
22 | Artocarpus communis | Moraceae | Plantae | 194251 |
23 | Ficus bubu | Moraceae | Plantae | 378014 |
24 | Ficus glumosa | Moraceae | Plantae | 182114 |
25 | Ficus mucuso | Moraceae | Plantae | 309328 |
26 | Ficus thonningii | Moraceae | Plantae | 309310 |
27 | Rhabdophyllum arnoldianum | Ochnaceae | Plantae | 1501067 |
28 | Maesa lanceolata | Primulaceae | Plantae | 992730 |
29 | Mitragyna inermis | Rubiaceae | Plantae | 170023 |
30 | Pentas schimperi | Rubiaceae | Plantae | 25384 |
31 | Rothmannia talbotii | Rubiaceae | Plantae | 1317881 |
32 | Chythrantus claneianus | Sapindaceae | Plantae | — |
33 | Paullinia pinnata | Sapindaceae | Plantae | 290984 |
34 | Paullinia pinnata | Sapindaceae | Plantae | 290984 |
35 | Glyphaea brevis | Tiliaceae | Plantae | 93769 |
36 | Tectona grandis | Verbenaceae | Plantae | 41396 |
37 | Justicia secunda | Acanthaceae | Plantae | 4190 |
38 | Bignonia binata | Bignoniaceae | Plantae | 680235 |
Showing of synonyms
Daucosterol
Sitogluside
474-58-8
Eleutheroside A
Alexandrin
Daucosterin
Coriandrinol
Beta-Sitosterol glucoside
BSSG
Doursterol
Sitoglusidum
Sterolin
Sitoglusido
Daucosterine
WA 184
Beta-Daucosterol
EU-4906
Sitosteryl glycoside
AW 10
Sitosterol D-glucoside
NSC-165962
BSS-G
Beta-Sitosteryl glucoside
Beta-Sitosterol monoglucoside
UNII-U45VN859W3
CHEBI:67554
AW-10
U45VN859W3
WA-184
Beta-Sitosterol D-glucoside
NSC 165962
BRN 4359450
Beta-SITOSTEROL-GLUCOSIDE
BETA-SITOSTEROL GLUCOSIDE (DAUCOSTEROL) (CONSTITUENT OF STINGING NETTLE)
(3beta)-stigmast-5-en-3-yl beta-D-glucopyranoside
Sitogluside (USAN/INN)
3-beta-(beta-D-Glucopyranosyloxy)stigmast-5-ene
Beta-sitosteryl-beta-D-glucopyranoside
.beta.-sitosterol-glucoside
CHEMBL506678
Beta-Sitosterol beta-D-Glucoside
Sitosterol-3-O-beta-D-glucoside
(2R,3R,4S,5S,6R)-2-[[(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
.beta.-D-Glucopyranoside, (3.beta.)-stigmast-5-en-3-yl
Beta-sitosterol 3-O-beta-D-glucopyranoside
(-)-beta-Sitosterol-beta-D-glucopyranoside
D05848
(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol
NSC165962
Sitosterol glucuronide
B-Sitosterol b-D-glucoside
AC1NX3NW
Beta-sitosterol glucutonide
Sitogluside [USAN:INN]
Sitoglusidum [INN-Latin]
Sitoglusido [INN-Spanish]
Beta-sitosterol-beta-D-glycoside
MFCD01683621
CID5742590
EU 4906
SITOGLUSIDE [INN]
O-glucosyl-beta-sitosterol
SITOGLUSIDE [USAN]
SureCN137210
3beta-(beta-D-Glucopyranosyloxy)stigmast-5-ene
?-Sitosterol ?-D-glucoside
Ambap474-58-8
C011015
SCHEMBL137210
Sitosteryl 3-beta-D-glucoside
(3-beta)-Stigmast-5-en-3-yl-beta-D-glucopyranoside
DTXSID301045674
HY-N0410
3-O-beta-D-glucosyl-beta-sitosterol
BDBM50257635
Beta-sitosterol 3-O-beta-D-glucoside
Beta-sitosterol-beta-D-glucopyranoside
AKOS032962016
CS-5421
MS12901
-Sitosterol -D-glucoside
DA-52322
MS-30381
FT-0686600
NS00123835
.BETA.-SITOSTEROL-.BETA.-D-GLUCOSIDE
C20785
SITOSTEROL 3-O-.BETA.-D-GLUCOPYRANOSIDE
(3|A)-Stigmast-5-en-3-yl |A-D-glucopyranoside
Stigmast-5-ene, 3-beta-(beta-D-glucopyranosyloxy)-
Beta-D-Glucopyranoside, (3beta)-stigmast-5-en-3-yl
BRD-K14276241-001-01-2
Q15410900
3.BETA.-(.BETA.-D-GLUCOPYRANOSYLOXY)STIGMAST-5-ENE
BETA-SITOSTEROL GLUCOSIDE (DAUCOSTEROL) (CONSTITUENT OF STINGING NETTLE) [DSC]
(2R,3R,4S,5S,6R)-2-((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yloxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol
(2R,3R,4S,5S,6R)-2-[[(3S,8S,9S,10R,13R,14S,17R)-17-[(1R,4R)-4-ethyl-1,5-dimethyl-hexyl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol
- Tala M, Wabo H, et al. (2013). A prenylated xanthone and antiproliferative compounds from leaves of Pentadesma butyracea. Phytochemistry Letters, 2013, 6(3), 326-330. [View]
- Seumo AS, Nanfack ARD, et al. (2022). Alkenylbenzoquinones and other compounds from the fruit of Maesa lanceolata exhibited potent cytotoxic, antibacterial, and antiradical scavenging activities.. Natural product research,2022, 36(17), 4379-4387. [View] [PubMed]
- Nanmeni G, Tedonkeu AT, et al. (2021). An Efflux Pumps Inhibitor Significantly Improved the Antibacterial Activity of Botanicals from Plectranthus glandulosus towards MDR Phenotypes.. TheScientificWorldJournal,2021, 2021, 5597524. [View] [PubMed]
- Lenta BN, Weniger B, et al. (2007). Anthraquinones from the stem bark of Stereospermum zenkeri with antimicrobial activity.. Phytochemistry,2007, 68(11), 1595-1599. [View] [PubMed]
- Antibacterial and antibiotic-modifying activities of fractions and compounds from Albizia adianthifolia against MDR Gram-negative enteric bacteria. (2019). Antibacterial and antibiotic-modifying activities of fractions and compounds from Albizia adianthifolia against MDR Gram-negative enteric bacteria.. BMC complementary and alternative medicine,2019, 19(1), 120. [View] [PubMed]
- Kayo MT, Simo MK, et al. (2021). Antifungal potential of extracts, fractions and compounds from Uvaria comperei (Annonaceae) and Oxyanthus unilocularis (Rubiaceae).. Natural product research,2021, 35(24), 5732-5736. [View] [PubMed]
- Kuete V, Ango PY, et al. (2011). Antimicrobial activities of the methanol extract and compounds from Artocarpus communis (Moraceae).. BMC complementary and alternative medicine,2011, 11, 42. [View] [PubMed]
- Lunga PK, Qin XJ, et al. (2014). Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata.. BMC complementary and alternative medicine,2014, 14, 369. [View] [PubMed]
- Irungu BN, Adipo N, et al. (2015). Antiplasmodial and cytotoxic activities of the constituents of Turraea robusta and Turraea nilotica.. Journal of Ethnopharmacology,2015,174,419-425. [View] [PubMed]
- Kopa T, Tchinda A, et al. (2014). Antiplasmodial anthraquinones and hemisynthetic derivatives from the leaves of Tectona grandis (Verbenaceae). Phytochemistry Letters, 2014, 8, 41-45. [View]
- Lunga PK, Tamokou Jde D, et al. (2014). Antityphoid and radical scavenging properties of the methanol extracts and compounds from the aerial part of Paullinia pinnata.. SpringerPlus,2014, 3, 302. [View] [PubMed]
- Mahmoud B, Samy M, et al. (2020). Bignanoside A "A new neolignan glucoside" and bignanoside B "A new iridoid glucoside" from Bignonia binata leaves. Phytochemistry Letters, 2020, 35, 200-205. [View]
- Zingue S, Gbaweng Yaya AJ, et al. (2020). Bioguided identification of daucosterol, a compound that contributes to the cytotoxicity effects of Crateva adansonii DC (capparaceae) to prostate cancer cells.. Journal of ethnopharmacology,2020, 247, 112251. [View] [PubMed]
- Ngaffo CMN, Tchangna RSV, et al. (2020). Botanicals from the leaves of Acacia sieberiana had better cytotoxic effects than isolated phytochemicals towards MDR cancer cells lines.. Heliyon,2020, 6(11), e05412. [View] [PubMed]
- Bankeu JJ, Mustafa SA, et al. (2010). Ceramide and Cerebroside from the stem bark of Ficus mucuso (Moraceae).. Chemical & pharmaceutical bulletin,2010, 58(12), 1661-1665. [View] [PubMed]
- Nana F, Sandjo LP, et al. (2012). Ceramides and cytotoxic constituents from Ficus glumosa Del. (Moraceae). J. Braz. Chem. Soc., 2012, 23(3). [View] [PubMed]
- Mbosso EJ, Wintjens R, et al. (2013). Chemical constituents from Glyphaea brevis and Monodora myristica: chemotaxonomic significance.. Chemistry & biodiversity,2013, 10(2), 224-232. [View] [PubMed]
- Talla E, Yankep E, et al. (2014). Chemical constituents from root barks of Erythrina mildbraedii and stem barks of Erythrina addisoniae. Bull. Chem. Soc. Ethiop. 2014, 28(1), 155-159. [View]
- Mouffok S, Haba H, et al. (2012). Chemical constituents of Centaurea omphalotricha Coss. & Durieu ex Batt. & Trab.. Records of Natural Products,2012,6(3),292-295. [View]
- Djoumessi AK, Nono RN, et al. (2023). Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities. Metabolites 2023, 13, 298. [View] [PubMed]
- Foudjo Melacheu G, Mfotie Njoya E, et al. (2021). Contortamide, a new anti-colon cancer cerebroside and other constituents from Tabernaemontana contorta Stapf (Apocynaceae). Natural product research,2021, 35(11), 1757-1765. [View] [PubMed]
- Bitchagno GT, Tankeo SB, et al. (2016). Ericoside, a new antibacterial biflavonoid from Erica mannii (Ericaceae).. Fitoterapia,2016, 109, 206-211. [View] [PubMed]
- Anigboro AA, Akeghware O, et al. (2022). Evaluation of bioactive constituents and In vitro antioxidant potentials of the ethanolic leaf extracts of Dracaena mannii, Euphorbia hirta and Senna alata. Journal of bio-research, 2022, 20(3), 1753-1762. [View]
- Fongang Y, Bankeu J, et al. (2015). Flavonoids and other bioactive constituents from Ficus thonningii Blume (Moraceae). Phytochemistry Letters, 2015, 11, 139-145. [View]
- Mbosso ETJ, Kamdem ML, et al. (2015). In Vitro Evaluation of Antimicrobial and Antiproliferative Activities for Compounds Isolated from the Ficus Bubu Warb. (Moraceae) Fruits: Chemotaxonomic Significance. Drug Delivery Letters,2015, 5(2), 122-131. [View]
- Ngangoue MO, Ndifor AR, et al. (2024). Isolation and antibacterial activity of anomanol B and other secondary metabolites from the stem bark of Anonidium mannii (Annonaceae). Natural product research,2024, 38(11), 1813-1822. [View] [PubMed]
- Benabdelaziz I, Haba H, et al. (2015). Lignans and other constituents from Helianthemum sessiliflorum Pers.. Records of Natural Products,2015,9(3),342-348. [View]
- Donfack E, Lenta B, et al. (2012). Naucleactonin D, an Indole Alkaloid and other Chemical Constituents from Roots and Fruits of Mitragyna inermis. Zeitschrift für Naturforschung B. 2012, 67(11), 1159-1165. [View]
- Mbing JN, Missi MB, et al. (2014). New flavonoids C-glycosides from Rhabdophyllum arnoldianum.. Natural product research,2014, 28(8), 539-544. [View] [PubMed]
- Kamlo Kamso VF, Dongmo Melogmo YK, et al. (2023). New lignan glycosides from Justicia secunda Vahl (Acanthaceae) with antimicrobial and antiparasitic properties.. Heliyon,2023, 9(12), e22897. [View] [PubMed]
- Donfack A, Tala M, et al. (2017). Rothtalazepane, A New Azepane from the Wood of Rothmannia talbotii (Rubiaceae). Natural Product Communications, 2017, 12(9), 1435 - 1436. [View]
- Donfack A, Toyang N, et al. (2012). Stigmastane derivatives from the roots of Vernonia guineensis and their antimicrobial activity.. Phytochemistry Letters, 2012, 5(3), 596-599. [View]
- Aichour S, Haba H, et al. (2014). Terpenoids and other constituents from Euphorbia bupleuroides. Phytochemistry,2014,10,198-203. [View]
- Maffo T, Wafo P, et al. (2015). Terpenoids from the stem bark of Neoboutonia macrocalyx (Euphorbiaceae). Phytochemistry Letters, 2015, 12, 328-331. [View]
- Fouokeng Y, Akak CM, et al. (2017). The structure of antrocarine E, an ergostane isolated from Antrocaryon klaineanum Pierre (Anacardiaceae).. Fitoterapia,2017, 117, 61-64. [View] [PubMed]
- Donfack A, Tala M, et al. (2014). Two new anthraquinone dimers from the stem bark of Pentas schimperi (Rubiaceae). Phytochemistry Letters, 2014, 8, 55-58. [View]
- Nzowa LK, Teponno RB, et al. (2013). Two new tryptophan derivatives from the seed kernels of Entada rheedei: effects on cell viability and HIV infectivity.. Fitoterapia,2013, 87, 37-42. [View] [PubMed]
- Gojayev AS, Bankeu JJK, et al. (2013). Xanthine oxidase inhibitory activity of compounds from Chythrantus claneianus. Bangladesh J Pharmacol, 2013, 8(1), 78-83. [View]
Pubchem:
5742590
Cas:
474-58-8
Gnps:
CCMSLIB00005720278
Zinc:
ZINC000049888788
Chebi:
67554
Nmrshiftdb2:
60018815
Metabolights:
MTBLC67554
Chembl:
CHEMBL506678
Bindingdb:
50257635
CPRiL:
7215
SMILES: C1CCC(C12)CCC3C2CC=C4C3CCC(C4)OC5CCCCO5
Level: 1
Mol. Weight: 576.86 g/mol
SMILES: C1CCC(C12)CCC3C2CC=C4C3CCCC4
Level: 0
Mol. Weight: 576.86 g/mol
SMILES: C1CCOCC1
Level: 0
Mol. Weight: 576.86 g/mol
Anti-colon cancer
Antibacterial
Antiradical scavenging
Cytotoxic
Absorption
- Caco-2 (logPapp)
- -5.15
- Human Oral Bioavailability 20%
- Bioavailable
- Human Intestinal Absorption
- Absorbed
- Madin-Darby Canine Kidney
- -4.92
- Human Oral Bioavailability 50%
- Bioavailable
- P-Glycoprotein Inhibitor
- Inhibitor
- P-Glycoprotein Substrate
- Non-Substrate
- Skin Permeability
- 1.98
Distribution
- Blood-Brain Barrier (CNS)
- -
- Blood-Brain Barrier
- Penetrable
- Fraction Unbound (Human)
- 1.34
- Plasma Protein Binding
- 105.49
- Steady State Volume of Distribution
- -
Metabolism
- Breast Cancer Resistance Protein
- Non-Inhibitor
- CYP 1A2 Inhibitor
- Non-Inhibitor
- CYP 1A2 Substrate
- Non-Substrate
- CYP 2C19 Inhibitor
- Non-Inhibitor
- CYP 2C19 Substrate
- Substrate
- CYP 2C9 Inhibitor
- Non-Inhibitor
- CYP 2C9 Substrate
- Non-Substrate
- CYP 2D6 Inhibitor
- Non-Inhibitor
- CYP 2D6 Substrate
- Non-Substrate
- CYP 3A4 Inhibitor
- Non-Inhibitor
- CYP 3A4 Substrate
- Substrate
- OATP1B1
- Non-Inhibitor
- OATP1B3
- Non-Inhibitor
Excretion
- Clearance
- 3.08
- Organic Cation Transporter 2
- Non-Inhibitor
- Half-Life of Drug
- -
Toxicity
- AMES Mutagenesis
- Safe
- Avian
- Safe
- Bee
- Toxic
- Bioconcentration Factor
- -1.84
- Biodegradation
- Safe
- Carcinogenesis
- Safe
- Crustacean
- Toxic
- Liver Injury I (DILI)
- Toxic
- Eye Corrosion
- Safe
- Eye Irritation
- Safe
- Maximum Tolerated Dose
- 0.08
- Liver Injury II
- Safe
- hERG Blockers
- Toxic
- Daphnia Maga
- 6.21
- Micronucleos
- Safe
- NR-AhR
- Safe
- NR-AR
- Safe
- NR-AR-LBD
- Safe
- NR-Aromatase
- Safe
- NR-ER
- Safe
- NR-ER-LBD
- Safe
- NR-GR
- Safe
- NR-PPAR-gamma
- Safe
- NR-TR
- Safe
- T. Pyriformis
- -6822.74
- Rat (Acute)
- 2.64
- Rat (Chronic Oral)
- 3.23
- Fathead Minnow
- 18.11
- Respiratory Disease
- Safe
- Skin Sensitisation
- Toxic
- SR-ARE
- Safe
- SR-ATAD5
- Safe
- SR-HSE
- Safe
- SR-MMP
- Safe
- SR-p53
- Safe
General Properties
- Boiling Point
- 363.25
- Hydration Free Energy
- -2.87
- Log(D) at pH=7.4
- 5.78
- Log(P)
- 7.4
- Log S
- -5.04
- Log(Vapor Pressure)
- -10.62
- Melting Point
- 182.42
- pKa Acid
- 8.82
- pKa Basic
- 7.72
Protein Name | UniProt ID | Entry Name | Species | #Pharmacophore Points | Probability (0.7 ≤ Tversky Score ≤ 1.0) |
---|---|---|---|---|---|
Serpin domain-containing protein | H0ZQY2 | H0ZQY2_TAEGU | Taeniopygia guttata | 3 | 0.8961 |
Serpin domain-containing protein | H0ZQY2 | H0ZQY2_TAEGU | Taeniopygia guttata | 3 | 0.8961 |
Aldos-2-ulose dehydratase | P84193 | AUD_PHACH | Phanerodontia chrysosporium | 3 | 0.8632 |
Aldos-2-ulose dehydratase | P84193 | AUD_PHACH | Phanerodontia chrysosporium | 3 | 0.8632 |
Aldo-keto reductase family 1 member C2 | P52895 | AK1C2_HUMAN | Homo sapiens | 3 | 0.8174 |
Aldo-keto reductase family 1 member C2 | P52895 | AK1C2_HUMAN | Homo sapiens | 3 | 0.8174 |
beta-glucosidase | Q92AS9 | Q92AS9_LISIN | Listeria innocua serovar 6a | 3 | 0.7833 |
beta-glucosidase | Q92AS9 | Q92AS9_LISIN | Listeria innocua serovar 6a | 3 | 0.7833 |
Macrophage metalloelastase | P39900 | MMP12_HUMAN | Homo sapiens | 3 | 0.7302 |
Macrophage metalloelastase | P39900 | MMP12_HUMAN | Homo sapiens | 3 | 0.7302 |
Putative b-glycan phosphorylase | Q21MB1 | Q21MB1_SACD2 | Saccharophagus degradans | 4 | 0.7120 |
Putative b-glycan phosphorylase | Q21MB1 | Q21MB1_SACD2 | Saccharophagus degradans | 4 | 0.7120 |